POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name English Course [S1MNT1>JAng2]

Course				
Field of study Mathematics of Modern Technologies		Year/Semester 1/2		
Area of study (specialization)		Profile of study general acader	nic	
Level of study first-cycle		Course offered Polish	in	
Form of study full-time		Requirements elective		
Number of hours				
Lecture 0	Laboratory class 0	es	Other 0	
Tutorials 60	Projects/seminar 0	S		
Number of credit points 3,00				
Coordinators	Lecturers			
mgr Alicja Wegwerth-Kurpiews alicja.wegwerth-kurpiewska@p	ka put.poznan.pl			

Prerequisites

the already acquired language competence compatible with level B1 (CEFR); the ability to use vocabulary and grammatical structures required on the high school graduation exam with regard to productive and receptive skills; the ability to work individually and in a group; the ability to use various sources of information and reference works.

Course objective

advancing students' language competence towards at least level B2 (CEFR); development of the ability to use academic and field specific language effectively in both receptive and productive language skills; improving the ability to understand field specific texts (familiarizing students with basic translation techniques); improving the ability to function effectively on an international market and on a daily basis.

Course-related learning outcomes

Knowledge:

• ought to acquire field specific vocabulary related to the following issues: differential equations, information technologies, analytic geometry, probability theory, and also be able to define and explain associated terms, phenomena and processes [K_W03(P6S_WG)]; • knows and understands English grammar and lexical rules and applies them successfully in various oral and written forms [K_W03(P6S_WG)].

Skills:

• discuss general and field specific issues using an appropriate linguistic and grammatical repertoire [K_U15(P6S_UK)];

• communicate in English in general and professional environment using different techniques and also using mathematical tools [K_U15(P6S_UK)];

• prepare and present a project in English on field specific issues in the area of mathematics of modern technologies [K_U15(P6S_UK)];

• read and understand mathematical texts and technical documents [K_U15(P6S_UK)].

Social competences:

• retrieve information on his/her own from field specific texts in English [K_K01(P6S_KK)];

communicate effectively in a field specific/professional area and on a daily basis [K_K01(P6S_KK)].
and he is ready for further education due to the awareness of the limitations of his own knowledge [K K01(P6S_KK)].

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Tutorials:

• formative assessment: in-class evaluation (tests);

• summative assessment: exam.

Programme content

Update: 9.02.2025r. Tutorials: differential equations, information technologies, analytic geometry, probability theory.

Course topics

The tutorial programme covers the following topics:

presentations skills differential equations information technologies analytic geometry probability theory analysis of a scientific article students' projects elements of grammar EAP module

Teaching methods

Tutorials:

new vocabulary practice, e.g. pronunciation practice, speaking activities, e.g. students' dialogues, conversations, discussions, written tasks, matching definitions, multimedia activities.

Bibliography

Basic:

• Krukiewicz-Gacek, A./ Trzaska, A. 2012. English For Mathematics. Kraków: AGH.

Additional:

• Kucharska-Raczunas,A./Maciejewska,J. 2010. Mathematics For Students Of Technical Studies. Gdańsk: Wydawnictwo Politechniki Gdańskiej;

• Łyczko, A. 2015. English For Mathematics. Kraków: SPNJO.

• Brown, G./Sargent, B. 2021. Cambridge International AS Level Information Technology. London: Hodder Education Group

Breakdown of average student's workload

	Hours	ECTS
Total workload	75	3,00
Classes requiring direct contact with the teacher	62	2,50
Student's own work (literature studies, preparation for laboratory classes/ tutorials, preparation for tests/exam, project preparation)	13	0,50